Comparative Metagenomic Analysis of Soil Microbial Communities across Three Hexachlorocyclohexane Contamination Levels
نویسندگان
چکیده
This paper presents the characterization of the microbial community responsible for the in-situ bioremediation of hexachlorocyclohexane (HCH). Microbial community structure and function was analyzed using 16S rRNA amplicon and shotgun metagenomic sequencing methods for three sets of soil samples. The three samples were collected from a HCH-dumpsite (450 mg HCH/g soil) and comprised of a HCH/soil ratio of 0.45, 0.0007, and 0.00003, respectively. Certain bacterial; (Chromohalobacter, Marinimicrobium, Idiomarina, Salinosphaera, Halomonas, Sphingopyxis, Novosphingobium, Sphingomonas and Pseudomonas), archaeal; (Halobacterium, Haloarcula and Halorhabdus) and fungal (Fusarium) genera were found to be more abundant in the soil sample from the HCH-dumpsite. Consistent with the phylogenetic shift, the dumpsite also exhibited a relatively higher abundance of genes coding for chemotaxis/motility, chloroaromatic and HCH degradation (lin genes). Reassembly of a draft pangenome of Chromohalobacter salaxigenes sp. (∼8X coverage) and 3 plasmids (pISP3, pISP4 and pLB1; 13X coverage) containing lin genes/clusters also provides an evidence for the horizontal transfer of HCH catabolism genes.
منابع مشابه
Metagenomic Analysis of a Complex Community Present in Pond Sediment
The metagenomic profiling of complex communities is gaining immense interest across the scientific community. A complex community present in the pond sediment of a water body located close to a hexachlorocyclohexane (HCH) production site of the Indian Pesticide Limited (IPL) (Chinhat, Lucknow) was selected in an attempt to identify and analyze the unique microbial diversity and functional profi...
متن کاملCross-biome metagenomic analyses of soil microbial communities and their functional attributes.
For centuries ecologists have studied how the diversity and functional traits of plant and animal communities vary across biomes. In contrast, we have only just begun exploring similar questions for soil microbial communities despite soil microbes being the dominant engines of biogeochemical cycles and a major pool of living biomass in terrestrial ecosystems. We used metagenomic sequencing to c...
متن کاملMetagenomic Analysis of Microbial Diversity in Landfill Lysimeter Soil of Ghazipur Landfill Site, New Delhi, India
We report the soil microbial diversity and functional aspects related to degradation of recalcitrant compounds, determined using a metagenomic approach, in a landfill lysimeter prepared with soil from Ghazipur landfill site, New Delhi, India. Metagenomic analysis revealed the presence and functional diversity of complex microbial communities responsible for waste degradation.
متن کاملFunctional Assays and Metagenomic Analyses Reveals Differences between the Microbial Communities Inhabiting the Soil Horizons of a Norway Spruce Plantation
In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses...
متن کاملMicrobial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic-hyperaccumulating plant Pteris vittata L.
To understand how microbial communities and functional genes respond to arsenic contamination in the rhizosphere of Pteris vittata, five soil samples with different arsenic contamination levels were collected from the rhizosphere of P. vittata and nonrhizosphere areas and investigated by Biolog, geochemical, and functional gene microarray (GeoChip 3.0) analyses. Biolog analysis revealed that th...
متن کامل